
.... t.

_;_r- -7:

NASA Contractor Report 89662

ICASE INTERIM REPORT 22

-- _ i N

.... ; Z

=

t_
> .la

....... I-- 0

<117

NW_

: 4 _W

! _ I,.. ua
_ .< D 0 vl

•._ tl. o') _,

PARTI PRIMITIVES FOR UN-_UCTURED AND BLOCK

,t STRUCTUREDPROBLEMS

,o Alan Sussman

toil Joel Saltz
Raja Das

s. Gupta
Dimitri_riplis

Ravi Ponnusamy

Kay _owley

NASA Contra-_. NAS 1- 18605

June I992

INS_COMPU_R APPLi_NS IN SCIENCE AND ENGINEERING

NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

N/kSA
National _ronautics and
Space Administration

Langley Research Center
Hampton,Virginia 23665-5225

ICASE INTERIM REPORTS

ICASE has introduced a new report series to be called ICASE Interim Reports.

The series will complement the more familiar blue ICASE reports that have been

distributed for many years. The blue reports are intended as preprints of

research that has been submitted for publication in either refereed journals or

conference proceedings. In general, the green Interim Report will not be submit-

ted for publication, at least not in its printed form. It will be used for research

that has reached a certain level of maturity but needs additional refinement, for

technical reviews or position statements, for bibliographies, and for computer

software. The Interim Reports will receive the same distribution as the ICASE

Reports. They will be available upon request in the future, and they may be

referenced in other publications.

M. Y. Hussaini

Director

ORIGINALCC_T::,i!!_,

PARTI PRIMITIVES FOR UNSTRUCTURED AND BLOCK

STRUCTURED PROBLEMS l

Alan Sussman _, Joel Saltz _, Raja Das _, S Gupta a, Dimitri Mavriplis a

Ponnusamy b and Kay Crowley _,c

_ICASE, MS 132C, NASA Langley Research Center, ltampton VA 23666

bDepartment of Computer Science, Syracuse University, Syracuse, NY 13244-4100

bDepartment of Computer Science, Yale University, New Haven, CT 06520

Ravi

ABSTRACT

This paper descri bes a set of primitives (PA RTI) developed to efficiently execute unstruc-

tured and block structured problems on distributed memory parallel machines. We present

experimental data from a 3-D unstructured Euler solw_r run on the Intel Touchstone Delta

to demonstrate the usefulness of our methods.

1Research was supported by the National Aeronautics and Space Administration under NASA Contract
No. NASI-18605 while the authors were in residence at the Institute for Computer Applications in Science

and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665-5225. In addition, support
for authors Saltz and Crowley were provided by NSF from NSF grant ASC-8819374. The authors assume
all responsibility for the contents of the paper.

olw

Ill

...._.INI_NIIONA_I _ -; PRECEDING PAGE BLANK NOT FILMED

_ ;_ ;;;; IZ-_ ¸" _;_ "-

1 Introduction

We consider tools that can be used to port irregular problems to distributed memory archi-

tectures. We specifically consider irregular prol)lems that call be divided into a sequence of

concurrent computational phases. In irregular problems, such as solving PDEs on unstruc-

tured or multiblock meshes (grids), the communication pattern depends on the input data.

This typically arises due to some level of indirection in the code. We address cases in which

data access patterns within each computationally intensive loop can be determined before

the program enters the loop. In some problems, data access patterns are specified by integer

indirection arrays. Examples of problems with these characteristics include unstructured

mesb explicit and multigrid solvers, along with many sparse iterative linear systems solvers.

We call this class of problems static single-phase or multi-phase computations (SSMPs). In

other cases, programs can exhibit highly uniform local computational structure. For such

problems, non-uniformities in computatFonal patterns occur in the interfaces between regu-

lar subdomains. Examples include multiblock Navier Stokes solvers and structured adaptive

multigrid problems. We will call this class of problems irregularly coupled regular mesh

computations (ICRMs). In a different paper in this volume, a more detailed taxonomy of

irregular problems is presented [11].

In the kinds of algorithms we consider here, data produced or input during a program's

initialization phase play a large role in determining the nature of the subsequent computation.

When the data structures that define a computation have been initialized, a preprocessing

phase follows. Vital elements of the strategy used by the rest of the algorithm are determined

by this preprocessing phase.

To effectively exploit many multiprocessor architectures, we may have to carry out run-

time preprocessing. This preprocessing is referred to as runtime compilation [36]. The

purpose of runtime compilation is not to determine which computations are to be performed

but instead to determine how a multiprocessor machine will schedule the algorithm's work,

how to map the data structures and how data movement within the multiprocessor is to be

scheduled.

In distributed memory MIMD architectures, there is typically a non-trivial communica-

tions startup cost. For efficiency reasons, information to be transmitted should be collected

into relatively large messages. The cost of fetching array elements can be reduced by pre-

computing what data each processor needs to send and to receive.

Only recently have methods been developed to integrate the kinds of runtime optimiza-

tions mentioned above into compilers and programming environments [36]. The lack of

compile-time information is dealt with by transforming the original parallel loop into two

constructs called an inspector and executor [32]. During program execution, the inspector

examines tile data references made by a processor, and calculates what off-processor data

needs to be fetched and where that data will be stored once it is received. The executor loop

then uses tile information from tile inspector to implement the actual computation.

We have developed closely related suites of primitives that can be used directly by pro-

grammers to generate inspector/executor pairs for SSMP and-ICRM problems. These primi-

tives carry out preprocessing that makes it straightforward to produce parallelized loops that

are virtually identical in form to the original sequential loops. The importance of this is that

it will be possible to generate the same quality object code on the nodes of the distributed

memory machine as could be produced by the sequential program running on a single node.

Our primitives for SSMP computations make use of hash tables [20] to allow us to recog-

nize and exploit a number of situations in which a single off-processor datum is used several

times. In such situations, the primitives only fetch a single copy of each unique off-processor

distributed array reference.

In many ICRM problems there are at most a few dozen meshes (blocks) of varying sizes.

If that is the case, it may be necessary to assign at least some of the meshes to multiple

processors to use all of the processors available in the distributed memory parallel machine.

We must consequently be prepared to deal with multiple levels of parallelism in ICRM codes.

Typically ICRM applications have two levels of parallelism available. Coarse-grained par-

allelism is available for processing the meshes concurrently. Each mesh is a self-contained

computation region that Can, except for bomldary conditions, be operated Upon indepen-

dently of the other meshes. In addition, the computation for individual blocks has fine-grain

parallelism available. Applying coarse-grained parallelism will help to keep communication

overhead to a manageable fraction of the computation time. However, since the number

of meshes is relatively small, particularly when compared to the number of processing el-

ements in current distributed-memory multicomputers, the coarse-grained parallelism be-

tween meshes will not provide sufficient parallel activity to keep all processors busy. The

fine-grained parallelism within each block must be used to fill this gap.

Primitives for ICRM problems make it possible for programmers to embed each mesh

into a subset of the processors in the distributed memory parallel machine. The primitives

schedule and carry out required patterns of data movement within and between meshes.

The suite of primitives used for SSMP problems is called PARTI (Parallel Automated

Runtime Toolkit at ICASE), while the suite of primitives used for ICRM problems is called

multiblock PA RTI.

Section 2 gives an overview of the PARTI routines for SSMP problems, and Section 3

provides a more detailed description of how the routines work. Section 4 discusses the

multiblock PARTI routines, including a description of how to apply them to a multiblock

computational flui(I dynamics application. Some CXl)erimental results for i,sing the PARTI

primitives are given in Section 5. Section 6 describes other research related to supporting

irregular computations, and Section 7 concludes.

2 PARTI

In this section, we give an overview of the principles and functionality of the PARTI prim-

itives. In Section 3 we give a more detailed description of some of the more sophisticated

PARTI procedures.

2.1 Parti Overview

The PARTI primitives (Parallel Automated R.untime Toolkit at ICASE) are designed to

ease the implementation of computational problems on parallel architecture machines by

relieving the user of low-level machine specific issues. The PARTI primitives enable the

distribution and retrieval of globally indexed but irregularly distributed data sets over the

numerous local processor memories. In distributed memory machines, large data arrays need

to be partitioned among the local memories of processors. These partitioned data arrays

are called distributed arrays. Long term storage of distributed array data is assigned to

specific memory locations in the distributed machine. A processor that needs to read an

array element must fetch a copy of that element from the memory of the processor in which

that array element is stored. Alternately, a processor may need to store a value into an off-

processor distributed array element. Thus, each element in a distributed array is assigned

to a particular processor, and in order to access a given element of the array we must know

the processor on which it resides, and its local address in that processor's memory. To

store this information, we build a translation table which, for each array element, lists the

host processor address. For a one-dimensional array of N elements, the translation table also

contains N elements, and therefore also must be distributed among the local memories of the

processors. For a P processor machine, this is accomplished by putting the first N/P elements

on the first processor, the second N/P elements on the second processor, etc. Thus, if we

are required to access the mth element of the array, we look up its address in the distributed

translation table, which we know can be found in processor m/P + 1. Alternatively, we could

renumber all the vertices of the unstructured grid to obtain a regular partitioning of arrays

over the processors. However, our approach can easily deal with arbitrary partitions, and

should enable a straightforward implementation of dynamically varying partitions, which

may be encountered in the context of axlaptive meshes. One primitive handles initialization

of distributed translation tables, and another primitive is used to accessthe distributed
translation tables.

In distributed memoryMIMD architectures,there is typically a non-trivial communica-

tions latency or startup cost. For efficiency reasons, hlformation to be transmitted should be

coJlected into relatively large messages. The cost of fetching array elements can be reduced

by precomputing tile locations of the data each processor needs to send and receive. In irreg-

ular problems, such as solving PDEs on unstrl,cturcd meshes and sparse matrix algorithms,

the communications patt(_rll depends on tim input data. In this case, it is not possible to

predict at compile time what data must be prefetched. This lack of information is dealt

with by transforming the original parallel loop into two constructs called an inspector and

executor. During program execution, the inspector examines the data references made by a

processor, and calculates what off-processor data needs to be fetched and where that data

will be stored once it is received. The executor loop then uses the information from the

inspector to implement the actual computation. The PARTI primitives can be used directly

by programmers to generate inspector/executor pairs. Each inspector produces a communi-

cations schedule, which is essentially a pattern of communication for gathering or scattering

data. In order to avoid duplicate data accesses, a list of off-processor data references is

stored locally (for each processor) in a hash table. For each new off-processor data reference

required, a search through the hash table is performed in order to determine if this reference

has already been accessed. If the reference has not previously been accessed, it is stored in

the hash table, otherwise it is discarded. The primitives thus only fetch a single copy of each

unique off-processor distributed array reference.

The executor contains embedded PARTI t)rimitives to gather or scatter data. The primi-

tives are designed to minimize the effect on the source code, such that the final parallel code

remains as close in form as possible to the original sequential code. The primitives issue

instructions to gather, scatter or accumulate (i.e. scatter followed by add) data according to

a specified schedule. Latency or start-up cost is reduced by packing various small messages

with the same destination into one large message.

Significant work has gone into optimizing the gather, scatter and accumulation commu-

nication routines for the Intel Touchstone Delta machine. During the course of developing

the PARTI primitives (originally for the Intel iPSC/860 hypercube), we experimented with

many of ways of writing the kernels of our communication routines. It is not the purpose

of this paper to describe these low level optimizations or their effects in detail; we will just

summarize the best communication mechanism we have found. In the experimental study

reported in this paper we use the optimized version of the communication routine kernels.

The communication is done using Intel forced message types. We use non-blocking re-

4

ceivecalls (lntel irecv), and eachprocessorpostsall receivecalls before it sendsany data.

Synchronizationmessagesare employedto makeSiil_ that all appropriate receivehasbeen

posted beforethe relevant messageis sent.
Communicationscontention is also reduced. We usea heuristic developedby Venkata-

krishnan [42] to determine the order in which eachprocessorsendsout its messages.The

motivation for this heuristic is to reducecontention by dividing tile communication into

groupsof messagessuch that, within eachgroup, eachprocessorsendsand receivesat most

one message.As Venkatakrishnannotes, this heuristic makesthe tacit assumption that all

messagesareof equallength and in anyeventdoesnot attempt to eliminate link contention.

3 A Detailed View of PARTI

3.1 Primitives for Communications Scheduling

This section describes in some detail the primitives that schedule and perform movement of

data between processors. To explain how the primitives work, we will use an example which

is similar to loops found in unstructured computational fluid dynamics (CFD) codes. In most

unstructured CFD codes, a mesh is constructed which describes an object and the physical

region in which a fluid interacts with the objcct. Loops in fluid flow solvers sweep over this

mesh structure. The two loops shown in Figure 1 represent a sweep over the edges of an

unstructured mesh followed by a sweep over faces that define the boundary of the object.

Since the mesh is unstructured, an indirection array has to be used to access the vertices

during a loop over the edges or the boundary faces. In loop L1, a sweep is carried out over the

edges of the mesh and tim reference pattern is specified by integer array edge/ist. Loop L2

represents a sweep over boundary faces, and the reference pattern is specified by face_list.

The array x only appears in the right hand side of expressions in Figure 1 (statements S1

through $4), so the values of x are not modified by these loops. In Figure 1_ array y is both

read and written. These references all involve accumulations in which computed quantities

are added to specified elements of y (statements SI through $4).

3.2 PARTI Executor

Figure 2 depicts the ezecutor code with embedded calls to Fortran PARTI procedures dfm-

.qathcr, dfscatter_add and dfscalter_addnc. Before this code is executed, we must carry out

a preprocessing phase, which is described in Section 3.3. This executor code changes sig-

nificantly when non-incremental schedules are employed. An example of the executor code

when the preprocessing is done without using incremental schedules is given in [38].

real*8 x(N),y(N)

C Loop overedgesinvolving x, y

L1 do i=l,n_cdge

nl = edge_list(i)

n2 = edgeAist(n_edge+i)

Sl y(nl) - y(nl) -4-...x(nl)... x(n2)

s_ y(n2)= y(n2) + ...x(,1)... x(,2)

end do

C Loop over Boundary faces involving x, y

L2 do i=l,n_face

ml = faceAist(i)

m2 = face_list(n_face+i)

m3 = face_list(2*n_fac(' + i)

s3 y(,,l)= y(ml) + ...x(,,,1)... ×(m2)... x(,n3)

$4 y(m2)= y(m2) + ...x(ml)... x(m2).., x(m3)

end do

Figure 1: Sequential Code

The arrays x and y are partitioned betweenprocessors;each processoris responsible

for the long term storageof specified elements of each of these arrays. Tile way in which

x and y are to be partitioned between processors is determined by the inspector. In this

examp}c, el(_ments of x att(] y arc partition(:d l)ctwc(;n processors in exactly th(: same way.

Each processor is responsible for n_on_p_vc elements of x and y.

It should be noted that except for the procedure calls, the structure of the loops in

Figure 2 is identical to that of the loops in Figure I. In Figure 2, we again use arrays

named x and y; in Figure 2, x and y now represent arrays defined on a single processor of

a distributed memory multiprocessor. On each processor, arrays x and y are declared to be

larger than would be needed to store the number of array elements for which that processor

is responsible. Copies of the off-processor data are placed in a buffer area l_eginning with

x (n_on_proc+l).

The PARTI subroutine calls depicted in Figure 2 move data between processors using

a precomputed communication pattern. The communication pattern is specified by either

a single schedule or by an array of schedules, dfmgather uses communication schedules to

fetch off-processor data that will be needed either by loop L1 or by loop L2. The schedules

specify the locations in distributed memor_y from which data is to be obtained. In Figure 2,

off-processor data is obtained from array x defined on each processor.

The PARTI procedures dfscatter_add and dfscatter_addnc, in statements $2 and $3 Fig-

ure 2, accumulate data to off-processor memory locations. Both dfscatter_add and dfscat-

ter_addnc obtain data to be accumulated to off processor locations from a buffer area that

begins with y(n_on_proc÷l). Off-processor data is accumulated to locations of y between

indexes I and n_on_pro¢. The distinctions between dfscatter_add and dfscatter_addnc will be

described in Section 3.4.

[n Figure 2, several data items may be accumulated to a given off-processor location in

loop L1 or in loop L2.

3.3 PARTI Inspector

In this section, we outline how to perform the preprocessing needed to generate the arguments

required by the code in Figure 2. This preprocessing is depicted in Figure 3.

The way in which the nodes of an irregular mesh are numbered frequently does not

have a useful correspondence to the connectivity pattern of the mesh. When we partition

such a mesh in a way that minimizes interprocessor communication, we may need to assign

arbitrary mesh points to each processor. The PARTI procedure i]build_translation_table (S1

in Figure 3) allows us to map a globally indexed distributed array onto processors in an

arbitrary fashion. Each processor passes the procedure ifbuild_translation_table a list of the

7

real*8 x(n_on_proc+n_off_proc)

real*8 y(n_on_proc+n_off_proc)

SI dfmgather(sched_array,2,x(n_on-proc+!),x)

C Loop overedgesinvolving x, y

LI do i=l,loca]_n_edge

nl = local_edgeAist(i)

n2 =]ocal_edge_list(]ocal_n_edge+i)

S1 y(nl)= y(nl) + ...x(nl)... x(n2)

$2 y(nZ) = y(n2) + ...x(nl)... x(n2)

end do

$2 dfscatter_add(edge_sched,y(n_on_proc+ 1),y)

C Loop over Boundary faces involving x, y

L2 do i=l,local_n3ace

ml = Iocal3acelist(i)

m2 = local3acelist(Iocalm_face+i)

m3 = locald'acclist(2*iocal_n_face + i)

$3 y(ml)= y(ml) + ...x(ml)... x(m2).., x(m3)

$4 y(m2)= y(m2) + ...x(ml)... x(m2).., x(m3)

end do

$3 dfseatter_a.ddnc(face_ched,y(n_.on_proc+ 1),

buffer_mapping,y)

Figure 2: Parallelized Code for Each Processor

8

S1 translation_table= ifbuild_translation_table(1,myvals,n_on_proc)

$2 call flocalize(translation_table,edge_sched,part_edge_list,

local_edge_list,2*n_edgc,n-off-Woc)

$3 sched_array(1)= edge_sched

$4 call fmlocalize(translation_table,face-sched,

incremental_face_sched,part3ace2ist,local_face__list,

4*n3ace, n_off_proc3ace,

n_new_off_woe_face , buffer_mapping, 1,sched_array)

$5 sched_array(2) = incremental_face_sched

Figure 3: Inspector Code for Each Processor

array elements for which it will be responsible (myvals in S1, Figure 3). If a given processor

needs to obtain a data item that corresponds to a particular global index i for a specific

distributed array, the processor can cousult the distributed translation table to find the

location of that item in distributed memory.

The PARTI procedures flocalize and fmlocaIize carry out the bulk of the preprocessing

needed to produce the executor code depicted in Figure 2. We will first describe flocalize

($2 in Figure 3). On each processor P, flocalize is passed:

(i) a pointer to a distributed translation table (translation_table in $2),

(ii) a list of globally indexed distributed array references for which processor P will be

responsible, (part_edge_list in $2), and

(iii) the number of globally indexed distributed array references (2*n_edge in $2).

Flocalize returns:

(i) a schedule that can be used in PARTI gather and scatter procedures (edge_sched in

$2),

(ii) an integer array (local_edgeJist) that is used to specify the access pattern of arrays x

and y in S1 and $2 of Figure 2,

9

partitioned global

reference list

i

w

off

processor

references

Fiocalize

gather into bottom of data array
m m

buffer

i

I

local storage associated

with each reference

i

w buffer
i

references

i

i

local data

off processor data

Figure 4: Flocalize Mechanism

(iii) and tile number of distinct off-processor references found in edgeJist (n_off.processor

in $2).

A sketch of how the procedure flocalizc works is shown in Figure 4. The array edge_list

shown ill Figure 1 is partitioned between processors. The parLedgelist passed to flocalize

on each processor in Figure 3 is a subset of edgelist depicted in Figure 1. We cannot

use part_edgelist to index an array on a processor since part_edge_list refers to globally

indexed elements of arrays x and y. Flocalize modifies this part_edgelist so that valid

references are generated when the edge loop is executed. The buffer for each data array is

placed immediately following tile on-processor data for that array. For example, the buffer

for data array x starts at x(n_on_proc+l). When flocalize produced local_edge_list from

10

OFF PROCESSOR FETCHES

IN SWEEP OVER EDGES

OFF PROCESSOR FETCHES

IN SWEEP OVER FACES

INCREMENTAL -

SCHEDULE

DUPLICATES

EDGE SCHEDULE

Figure 5: Incremental schedule

part_edge_list, the off-processor references were changed to point to the buffer addresses.

When the off processor data is collected into the buffer using the schedule returned by flocal-

ize, the data is stored in a way such that execution of the edge loop using the local_edge_list

accesses the correct data.

There are a variety of situations in which tim same data need to be accessed by multi-

pie loops (Figure 1). In Figure 1, no assignments to x are carried out. At the beginning

of tile program in Figure 2, each processor can gather a single copy of every distinct off-

processor value of x referenced by loops LI or L2. Tile PARTI procedure fmlocalize ($4 in

Figure 3) removes these d,,plicate references, fmlocalize makes it possible to obtain only those

off-processor data not requested by a given set of pre-existing schedules. The procedure dfm-

gather in the executor in Figure 2 obtains off-processor data using two schedules; edge_sched

produced by flocalize ($2 Figure 3) and incremental_face_sched produced by fmlocalize ($4

Figure 3).

The pictorial representation of the incremental schedule is given in Figure 5. The schedule

to bring in the off-processor data for the edgeJoop is given by the edge schedule and is formed

first. During the formation of the schedule to bring in the off-processor data for the faceJoop

11

we remove the duplicates shown by the shaded region in Figure 5. Removal of duplicates is

achieved by using a hash table. The off-processor data to be accessed by the edge schedule

is first hashed using a simple function. Next all the data to be accessed during the face_loop

is hashed. At this point the information that exists in tlle hash table allows us to remove

all tile duplicates and form tile incremental schedule. In Section 5 we will present results

showing the usefulness of an incremental schedule.

To review tile work carried out by fmlocalizc, we will summarize the significance of all

but one of the arguments of this PARTI procedure. Oil each processor, fmlocalize is passed:

(i) a pointer to a distributed translation table (translation_table in $4),

(ii) a list of globally indexed distributed array references (partA'acelist in $4),

(iii) tile number of globally indexed distributed array references (4*n_face in $4),

(iv) the number of pre-existing schedules that need to be examined when removing dupli-

cates (1 in $4), and

(v) all array of pointers to pre-existing schedules (sched_array in $4).

Fmiocalize returns:

(i) a schedule that can be used in PARTI gather and scatter procedures. This schedule

does not take any pre-existing schedules into account (face_sched in $4),

(ii) an incremental schedule that includes only off-processor data accesses not included in

the pre-existing schedules (incrementalA'ace_sched in $4),

(iii) an integer array (local_face_list in $4) that is used to specify the access pattern of

arrays x and y in statements $3 and $4 of the executor code (Figure 2),

(iv) the number of distinct off-processor references in face_list (n_off_proc_face in $4),

(v) the number of distinct off-processor references not encountered in any other schedule

(nAmw_off_procA'ace in $4),

(vi) and a buffer_mapping - to be discussed in Section 3.4.

12

3.4 A Return to the Executor

We have, already discuss_d dfmgalher in Sccti(m 3.2 but we have not said anything so far

about the distinction between dfscatlcr_add an_l dfscallcr_addn, c. When we make use of

incremental schedules, we assign a single buffer location to each off-processor distributed

array element. In our example, we carry out separate off-processor accumulations after

loops L1 and L2. In this situation,the off-processor accumulation procedures may no longer

reference consecutive elements of a buffer.

We assign copies of distinct off-processor elements of y to buffer locations, to handle

off-processor accesses in loop L[(Figure 2). We can then use a schedule (edge_sched) to

specify where in distributed nmmory each consecutive value in the buffer is to be accu-

mulated. PARTI procedure dfscatter_add can be employed; this procedure uses schedule

edgc_sched to accumulate to off-processor locations consecutive buffer locations beginning

with y(n_on_proc -4- 1). When we assign off:processor elements of y to buffer locations in

L2, some of the off-processor copies may already be associated with buffer locations. Conse,

quently in $3, Figure 2, our schedule (face_sched) must access buffer locations in an irregular

manner. The pattern of buffer locations accessed is specified by integer array buffer_mapping

passed to dfscatter_addnc in statement $3 from Figure 2 (dfscatter_addnc stands for dfscat-

ter_add non-contiguous).

3.5 Automatic Inspector/Executor Generation

' lnsi)ectors and executors must be generated for loops in which distributed arrays are accessed

via indirection. Inspectors and executors are also needed in most loops that access irregu-

larly distributed arrays. Joint work with groups at Rice and Syracuse is underway to employ

PA RTI as the runtime SUl)port for a compiler that automatically generates distributed mem-

ory programs that make elTective use of incremental and non-incremental schedules. This

compiler is based on the Parascol)e parallel programming environment [22] and compiles

Fortran D [21]. Another group, at the University of Vienna, has already employed PARTI

for the runtime support in their distributed memory compiler [7].

4 Multiblock Parti

We are developing methods for parallelizing programs with irregularly coupled regular meshes

(ICRMs), commonly known as multiblock applications, to distributed memory parallel com-

puters. In order to ensure that our techniques are applicable to real-world problems, we have

begun our research with a specific multiblock problem from the domain of computational

fluid dynamics.

13

ORIGH_#.L PAGE

COLOR pF_OTOGRAPH

Figure 6: Multiblock grid intersecting the surface of an F-18

In many problems there are at most a few dozen blocks of varying sizes. We can assume

that we will have to assign at least some of the blocks to multiple processors, we must

consequently be prepared to deal with multiple levels of parallelism in ICRM codes. Typically

ICRM applications have two levels of parallelism available. Coarse-grained parallelism is

available for processing the blocks concurrently. Each block is a self-contained computation

region that can, except for boundary conditions, be operated upon independently of the

other blocks. In addition, the computation for individual blocks has fine-grain parallelism

available. AppIying coarse-grained parallelism will help to keep communication overhead to

a manageable fraction of the computation time.

4.1 Problem Overview

The application we are investigating is a problem fl'om the domain of computational fluid

dynamics. The serial code was developed by V. \:asta, M. Sanetrik and E. Parlette at the

NASA Langley Research Center [41], and solves the thin-layer Navier-Stokes equations for a

fluid flow over a three-dimensional surface with complex geometry. The problem geometry is

decomposed into between one and a few dozen distinct blocks, each of which is modeled with

a regular, three-dimensional, rectangular grid. An example of the multiblock grid structure

surrounding an airplane (an F-18) is shown in Figure 6. The meshes are shown intersecting

the solid surface of the airplane, and the various colors correspond to different blocks.

14

The boundary conditions of each block are enforced by simulating any of several situ-

ations, such as viscous and inviscid walls, symmetry planes, extrapolation conditions, and

interaction with an adjacent block. The size of each block, its boundary conditions and

adjacency information are loaded into the progranl at run-time. For this application, the

same program is run on all blocks, ttowever, different subroutines will be executed when

al)l)lying the boundary conditions on different blocks. In general, the code used to process

each block of an ICRM application may be different.

The sequence of activity for this program is as follows:

Read block sizes, boundary conditions and simulation parameters,

Repeat (typically large number of times):

A Apply boundary conditions to all blocks,

B Carry out computations on each block.

The main body of the program consists of an outer sequential loop, and two inner paral-

lel loops. Each of the inner loops iterates over the blocks of the problem, the first applying

boundary conditions (Step A), which may involve interaction with other blocks, and the

second loop advancing the physical simulation one time step in each block (Step B). Parti-

tioning of the parallel loops is the source of the coarse-grained parallelism for the application.

Furthermore, within each iteration of the i00p that implements Step B there is fine-grained

parallelism available in the form of (large) parallel loops.

4.2 The Multiblock PARTI Library

Several forms of run-time support are required for ICRM applications. First, there must

be a means for expressing data layout and organization on the processors of the distributed

memory parallel machine. Second, thcre must be methods for specifying the movement of

data required both because of partitioning of individual meshes (intra-block parallelism)

and because of interactions I)('tween different meshes (inter-block parallelism). Third, there

must be some way of transforming distributed array indexes specified in global coordinates

(as in the sequential code) into local indexes on a given processor in the distributed memory

parallel machine.

Integration of the required functionality into the Fortran D language [16] is currently

underway. As a preliminary step, we have defined a library of subroutines for expressing

tiffs functionality in Fortran programs, and are using them to test our support for ICRMs.

The data layout support provided by the library corresponds to Fortran D style declarations

of distributed arrays. The run-time activities that directly handle data communication are

15

generatedfrom the data usagepatterns ill the userprogram(either by the useror eventually
by a compiler), and consistof subroutinecalls to:

(i) build schedules(communicationpatterns, as describedin Section 2) for either intra-
block or inter-block communication,

(ii) perh)rm data movement using a previously built schedule,

(iii) and transform a global distributed array index into a local array index.

One major difference betw(:en PARTI and multiblock PARTI is that building schedules

for ICRM codes does not require interprocessor communication, since each processor knows

the layout of all the distributed arrays. Therefore no distributed translation table is re-

quired. Similarly, in multiblock PARTI, transforming a global distributed array index into

a local index does not require a lookup into a (distributed) translation table, but only re-

quires computing the proper local index using tile (local) data structure associated with each

distributed array. We now discuss the run-time support routines in more detail.

4.2.1 Data Layout

Tile binding of blocks to processors has important performance implications. Load balance

plays a crucial role in determining computational efficiency. Since the amount of computation

associated with each block is directly proportional to the number of elements in the block,

good load balancing is achieved by binding processors to blocks in a ratio proportional to

their sizes. In our implementation, this mapping is under user control.

The principal abstraction for dealing with data placement is the decomposition. However,

unlike Fortran D, where decompositions are bound to the entire processor set, we map

decompositions to subsets of tile processors. TI,e mechanism for specifying this arrangement

is a subroutine called embed. Embed binds a decomposition to a rectangular subregion of

another decomposition. Any number of decompositions may be embedded into a single

root decomposition. The root decoml)osition is mapped onto the entire set of physical

processors. Embedded decompositions are mapped onto subsets of these processors based

on tile relative size and location of the subregion in tile root decomposition to which they

are bound. This methodology can easily be extended recursively to support an arbitrary

sequence of embeddings, although for most ICRM applications we are aware of a two level

decomposition hierarchy appears to be sufficient.

For the Navier-Stokes application, we use a one-dimensional decomposition for the root

level, and embed 3-dimensional blocks into it. For example, if two blocks, one of size 10 x

10 x 10 and the other 5 × 5 x 10 were to be mapped onto the physical processing resource,

16

a root-hwcl decompositionof size1250wouhl bc used.Tile first block would be embedded

into locations 1 through 1000of this decomposition,and the secondblock into locations

1001through 1250.This implies that 4/5 of the processorsareusedto computefor the first

block, and 1/5 of the processorsare usedfor the secondblock.

The distribute subroutine defines the type of distribution for each dimension of a decom-

position. Distribute supports three types of distributions for the N elements of one dimension

of a decomposition, to be partitioned onto P processors (assuming that both decomposition

elements and processors are numbered starting at 1):

(i) block, in which the first NIP elements are assigned to the first processor, the second

NIP to the second processor, etc.,

(ii) cyclic, in which processor i is assigned all elements with index j such that

i = j rood P,

(iii) and undistributed.

While a decomposition is an abstract specification of a problem domain, another subrou-

tine is required to map a particular distributed array with respect to a decomposition. The

align subroutine conforms a distributed array with a decomposition, in addition allowing the

specification of rotation (so that any array dinaension can be aligned with any decomposition

dimension) and of ghost cells for each dimension. These ghost cells will contain copies of

distributed array elements residing on other processors that are required to perform local

computation (caused by partitioning a single block to obtain fine-grained paralleIism). The

use of decompositions as an abstraction of a problem domain allows multiple distributed ar-

rays to be mapped in exactly the same way, ew_n if two arrays are not exactly the same size

(e.g. the size of one is some multiple of the size of the other, as in a multigrid application),

or have dimensions that are rotated with respect to each other (e.g. matrices aligned so

that the rows of one matrix are mapl)ed in the same way as the columns of another matrix).

Another possibility is to align only some of the dimensions of a distributed array to an en-

tire decomposition (e.g. align a 4-[) array with a 3-D decomposition). In that case, all the

elements in the unaligned dimensions of the distributed array are allocated on all processors

that contain decomposition elements.

4.2.2 Interprocessor Communication

Two types of communication are required in ICRM applications: intra-block communication

because a single block may be partitioned across the processors of the distributed memory

parallel machine, and inter-block communication because of boundary conditions between

17

blocks, causedby tile assignmentof blocks to different processorsto obtain coarse-grained

parallelism. As for the PARTI primitives for unstructured meshcomputations, communi-
cation is performed in two phases. First, a subroutine is called to build a communication

schedule that describes the required data motion, and then another subroutine is called to

perfornJ the data motion (sends and receives on a distributed memory parallel machine) us-

ing a previously built schedule. Such an arrangement allows a schedule to be used multiple

times in an iterative algorithm (such as the Navier-Stokes multiblock algorithm), so long

ms the data layout does not change. This amortizes the cost of building schedules, so that

the preprocessing time should not be a significant part of the execution time of this type of

program.

The communication primitives include a procedure exch_sched, which computes a sched-

ule that is used to direct the filling of overlap cells along a given dimension of a distributed

array. Ezch_sched executes on each processor that contains a part of the distributed array,

and, for a given processor i, determines both which other processors require data that is

stored on processor i, and which other processors store data that processor i requires.

The primitive subarvay__¢ched carries out the preprocessing required to copy the contents

of a regular section [19], source, in one block into a regular section, destination, in another

(or the same) block. The interactions between blocks for ICRM applications are limited to

the exchange of regular sections. The subarray_qched primitive supports data moves between

arbitrary rectangular portions of two blocks, and can transpose the data along any dimension.

Svbarvay_sched produces a schedule which specifies a pattern of intra-processor data transfers

(for the parts of the source and destination subsections that reside on the same processor),

along with a set of send and receive calls for interprocessor communication. On a given

processor, i, subarvay_sched determines whether it owns any portion of source. If i does own

some portion, source_i, of source, subavray_schcd computes the processors to which various

parts of souvce_i must be sent. Similarly, s'wtbavray_._ehed also computes whether processor i

owns any portion of destination and, if so, determines which other processors send messages

to processor i.

The schedules produced by czch_schcd and subarray_sched are employed by a primitive

called data'move that carries out both interprocessor communication and intra-processor

data copying.

4.2.3 Distributed Array Index Transformation

The final form of support provided by the library for ICRMs is to transform all indexes into

distributed arrays from the global value (an index into the whole distributed array) to a

local index on the processor executing a distributed array reference. For a loop that only

18

usestile loop index to reference into one distributed array (or multiple distributed arrays

mapped identically), tlle index transformation can be performed in the loop header, only

modifying the loop bounds to iterate over the indexes of the local distributed array elements.

Two primitives, local_lower_bound and local_upper_bound, are provided for transforming loop

bounds (returning, respectively, the lower and upper local indexes of a given dimension of

the referenced distributed array). In general, howev_,r, each distributed array reference (read

or write) must have the array index transformed from a global to a local reference for correct

parallel execution. Techniques for collecting all the references to multiple distributed arrays

in a single loop and properly transforming indexes are complex, and have been investigated

by other researchers [21].

4.3 An Example

An example of the structure of a parallelize(l explicit multiblock code should help clarify

the use of the library routines. We will display both the parts of the code that declare the

distributed arrays and the parts that build and use schedules for intra-block and inter-block

communication. Multigrid code would have the same general structure, with loops over the

grid levels surrounding the code for the explicit time step. Multigrid code also requires trans-

ferring data between multigrid levels, which can be done using the subarray_ezch primitive.

The pseudo-code is shown in Figure 7. For simplicity, assume that we already know the

global sizes of all the blocks in the data array x.

The declarations of the distributed arrays are fairly straightforward. The various blocks

will all be stored in one array x, and a separate pointer array will contain the starting

positions of each block. The decomposition DI is mapped onto the entire set of physical

processors that the program runs on, while each decomposition in D3 is embedded into a

part of the physical processor set (physical processors are assigned based on the relative sizes

of the various blocks). Each block in .r is the,i alig,ed with its corresponding decomposition

(in this example each decomposition is used for only one distributed array).

In this example, the distribution of the distributed array x does not change, so schedules

for data movement may be computed once, and saved for multiple later uses. Therefor6,

in the main loop body only calls to the data_move subroutine are required, both for inter-

block and intra-block communication. Global to local index translation is performed on the

innermost loops that iterate over the local elements of the distributed data array z, using

the loop bound adjustment subroutines. This assumes that the innermost loop indexes are

only used to index into distributed array z, and not for other purposes.

19

(i)

0i)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

(ix)

(,,)

Allocate a 3-D data array x, large enough for all the block portions to be stored locally

(including ghost cells).

Create a I-D decomposition, DI, with size equal to the total number of elements in

x (the sum of tile sizes of all the blocks, without ghost cells).

Create an array of 3-D decompositions, D3[num_blocks]. Each element of D3 cor-

responds to one block, and each decomposition is the same size in every dimension as

its corresponding block.

Embed decomposition D3[1] into DI at position 1, and all other decompositions D3[i]

into DI after D3[i- 1] (i.e. D3[i] starts right after D3[i- 1] ends).

Distribute each decomposition in D3 (e.g. block-wise in each of its dimensions).

Align each block in x with its corresponding decomposition in D3 (i.e. align block i

with D3[i]). Also specify the number of ghost cells required in each dimension.

Fill in pointer array blocks_x, so that blocks_:x contains the indexes for the start of each

individual block in x. This can be done now that the local sizes of all the blocks can

be determined from the declarations for the distributed array (including ghost cells).

Build and save schedules for all interfaces between blocks, using subarray_exch.

Build and save schedules for filling in ghost cells of each block, using exch_sched.

For each time step do:

(a) Update boundary conditions - for each block interface, call data_move with the

corresponding previously built schedule (from subarray_exch).

(b) For each block in x do:

i. Fill in ghost cells, with a call to data_move, using a previously built schedule

for the block (from exch_sched).

ii. For each locally owned element of the block, perform the local computation

- the loop bounds for this iteration are obtained from localJower_bnd and

local_upper_bad applied to the current block.

Figure 7: Parallel multiblock code for each processor, using multiblock PARTI

20

5 Experimental Results for an Unstructured Mesh

We summarize the results of some of tile experiments we have carried out to evaluate the

l)erformance impact of our optimizations. These experiments were carried out on the Intel

Touchstone Delta machine. For purposes of COml)arison , we cite performance numbers ob-

tained from an optimized Cray YMP version of this code [31]. A more detailed account of

this experimental work may be found in [13].

Tile test case we report here involve§ the c()mputation of a highly resolved flow over a

three-dimensional aircraft configuration. We employed both an explicit algorithm and a V

cycle multigrid algorithm. The mesh employed for the explicit algorithm, which corresponds

to the finest mesh employed in the multigrid calculation, contains 804,056 points and ap-

proximately 4.5 million tetrahedra. We believe this is the largest unstructured grid Euler

solution attempted to date. In Figure 8, we depict the second mesh used in the multigrid

sequence (we do not show the 804K mesh due to printing and resolution limitations). The

mesh shown has 106,064 points and 575,986 tetrahedra. For this case, the freestream Mach

number is 0.768 and the incidence is 1.16 degrees. The computed Mach contours are also

shown in Figure 8, where good resolution of the shock on the wing is observed.

We employed the recursive spectral'partitioning algorithm to carry out partitioning [33,

39]. Williams [43] compared this algorithm with binary dissection [5] and simulated anneal-

ing methods for partitioning two-dimensional unstructured mesh calculations. He found that

recursive spectral partitioning produced better partitions than binary dissection. Simulated

annealing in some cases produced better partitions but the overhead for simulated annealing

proved to be prohibitive even for the relatively small meshes employed (the largest had 5772

elements). Venkatakrishnan [42] and Simon [39] also reported favorable results with the

spectral partitioner. We carried out preliminary performance comparisons between binary

dissection and the recursive spectral partitioning and found that recursive spectral partition-

ing gave superior results on an iPSC/860 hypcrcul)e on our three dimensiohal meshes. The

results we report all have been obtained using recursive spectral partitioning to partition all

meshes. Partitioning was performed on a sequential machine as a preprocessing operation.

We use the optimized version of the communications kernels which employ forced message

types, non-blocking receives (irecv), and employ Venkatakrishnan's heuristic to determine

the order in which messages are sent.

The single mesh algorithm achieved a rate of 778 Mfiops on 256 processors of the Delta

machine, and 1496 Mfiops on the full 512 processor configuration of the Delta. The V cycle

multigrid algorithm achieved a rate of 1200 Mflops on 512 processors. We implemented the

explicit Euler solver with and without incremental scheduling optimization. In Table 1, we

21

Figure 8: CoarseUnstructured Meshand Mach Contoursabout an Aircraft Configuration
with SingleNacelle

22

Method

No Incremental
Scheduling

Incremental

Scheduling

Time/

Iteration

(secon ls)

4.18

Mflops

947

Preprocessing

Time

seconds

2.65 1496

2.73

2.99

Table 1: Explicit Unstructured Euler Solver on 804K Mesh on 512 Delta Processors- Incre-

mental v.s. Non-Incremental Scheduling

depict:

computational rate in Mflops,

tile time required per iteration, and

the preprocessing time needed to generate all communication schedules.

We note that incremental scheduling leads to a roughly 35% reduction in total time per

iteration in this problem. The preprocessing time increases only modestly when we use

incremental scheduling and is roughly equal to the cost of a single parallelized iteration.

The same problem was run on the CRAY YMP-8 machine, using all eight processors in

dedicated mode. The CRAY autotasking software was used to parallelize the code for this

architecture. Both the single grid and multigrld codes achieved a computational rate of 750

Mflops on all eight processors, which corresponds to a speedup of roughly 7.5 over the single

processor performance.

6 Related Research

Programs designed to carry out a range of irregular computations, including sparse direct

and iterative methods require many of the optimizations described in this paper. Some

examples of such programs are described in [2, 4, 15, 28, 44].

Several researchers have developed programming environments that are targeted towards

particular classes of irregular or adaptive problems. Williams [44] describes a programming

environment (DIM E) for calculations with unstructured triangular meshes using distributed

memory machines. Baden [3] has developed a programming environment targeted towards

23

particle computations. This programming environment provides facilities that support dy-

namic load balancing. DecTool [12] is an interactive environment designed to provide facili-

ties for either automatic or manual decompositions of 2-D or 3-D discrete domains.

There are a variety of compiler projects targeted at distributed memory multiprocessors

[1, 9, 10, 14, 17, 18, 23, 25, 26, 27, 34, 35, 36, 40, 45]. Runtime compilation methods are

employed in four of these projects; the Fortran D project [21], the Kali project [23], Marina

Chen's work at Yale [30] and our PARTI project [32, 36, 37]. The Kali compiler was the

first compiler to implement inspector/executor type runtime preprocessing [23] and the ARF

compiler was the first compiler to support irregularly distributed arrays [36]. In related work,

Lu and Chen have reported some encouraging results on the potential for effective runtime

parallelization of loops in distributed memory architectures [30].

Initial efforts toward runtime and compiler support for block structured problems within

the PARTI project are described in [6, 8]. Work has also been done at GMD in Germany

to parallelize block structured grid algorithms [29], and to provide software support for such

efforts [24].

7 Conclusions

We have discussed tools that can be used to port irregular problems to distributed memory

parallel machines. We have described PARTI primitives to support irregular problems on

both unstructured and multiblock structured meshes. As the experimental results of using

the PARTI primitives to parallelize an unstructured grid Euler solution in Section 5 show, our

methods can be used to efficiently execute irregular problems on highly parallel distributed

memory machines. In the future, we should obtain similar, or better, efficiency using the

multiblock PARTI primitives for the multiblock CFD application described in Section 4.1.

Multiblock codes shouhi obtain better performance from each processor in the distributed

memory parallel machine than unstructured codes, because of more regular access to local

memory. Also, the multiblock primitives do not require interprocessor communication to

build schedules (as do the PARTI primitives for unstructured problems). Further work

is continuing to expand the class of irregular problems that are supported by the PARTI

primitives, and at the same time we are continuing to improve the performance of the existing

implementations.

Acknowledgments

We would like to thank Horst Simon for providing us with his recursive spectral partitioner

and Rob Vermeland and CRAY Research Inc. for providing dedicated time on the CRAY

24

YMP-8 machine. This researchwas perfornmd ill part using the Intel TouchstoneDelta

Systemoperatedby Caltechon behalf of tile ConcurrentSupercomputingConsortium. We

gratefully acknowledge NASA Langley Research Center for providing access to this facility.

References

[1] F. Andr6, J.-L. Pazat, and H. Thonlas. PANDORE: A system to manage data distri-

bution. Ill International Conference on Supercomputing, pages 380-388, June 1990.

[2] C. Ashcraft, S. C. Eisenstat, and J. W. II. Liu. A fan-in algorithm for distributed sparse

nmnerical factorization. SISSC, 11(3):593 599, 1990.

[3] S. Baden. Programming abstractions for dynamically partitioning and coordinating

localized scientific calculations running on multiprocessors. SIAM J. Sci. and Stat.

Computation., 12(1), January 1991.

[4] D. Baxter, J. Saltz, M. Schultz, S. Eisentstat, and K. Crowley. An experimental study

of methods for parallel preconditioned Krylov methods. In Proceedings of the 1988

Hypercube MuItiprocessor Conference, Pasadena CA, pages 1698-1711, January 1988.

[5] M.J. Berger and S. H. Bokhari. A partitioning strategy for nonuniform problems on

multiprocessors. IEEE Trans. on Computers, C-36(5):570-580, May 1987.

[6] Harry Berryman, Joel Saltz, and Jeffrey Scroggs. Execution time support for adap-

tive scientific algorithms on distributed memory machines. Concurrency: Practice and

Experience, 3(3): 159 178, June 1991.

[7] P. Brezany, M. Gerndt, V. Sipkova, and H.P. Zima. SUPERB support for irregular

scientific computations. In Proceedings of the Scalable High Performance Computing

Conference (SHPCC-92), pages 314-321. IEEE Computer Society Press, April 1992.

[8] Craig Chase, Kay Crowley, Joel Saltz, and Anthony Reeves. Parallelization of irregu-

larly coupled regular meshes. Technical Report 92-1, ICASE, NASA Langley Research

Center, January 1992.

[9] M. C. Chen. A parallel language and its compilation to multiprocessor architectures

or VLSI. In 2nd A CM Symposium on Principles of Programming Languages, January

1986.

25

[10]

[1'1]

[12]

[1:3]

[14]

[15]

[16]

[171

[18]

[19]

A. Cheung and A. P. Reeves. Tile Paragon multicomputer environment: A first imple-

mentation. Technical Report EE-CEG-89-9, Cornell University Computer Engineering

Group, Cornell Ihliversity School of Electrical Engineering, July 1989.

Alok Choudhary, Geoffrey Fox, Sanjay Ranka, Seema Hiranandani, Ken Kennedy,

Charles Koelbel, and Joel Saltz. Software support for irregular and loosely synchronous

problems. In Proceedings of the Symposium on High-Performance Computing for Flight

Vehicles, December 1992.

N.P. Clirisochoides, C.E. tloustls, E.N. lloustis, P.N. Papachiou, S.K. Kortesis, and

J.R. Rice. Domain decomposer: A software tool for mapping PDE computations to

parallel architectures. Report CSD-TR-1025, Purdue University, Computer Science

Department, September 1990.

R. Das, D. J. Mavriplis, J. Saltz, S. Gupta, and R. Ponnusamy. The design and imple-

mentation of a parallel unstructured Eulcr solver using software primitives, AIAA-92-

0562. In Proceedings of the 30th Aerospace Sciences Meeting, January 1992.

I. Foster and S. Taylor. Strand: New Concepts in Parallel Programming. Prentice-Hall,

Englewood Cliffs, N J, 1990.

G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. Solving Problems

on Concurrent Compute1:_. Prentice-Hall, Englewood Cliffs, New Jersey, 1988.

Geoffrey Fox, Seema Hiranandani, Ken Kennedy, Charles Koelbel, Uli Kremer, Chau-

Wen Tseng, and Min-You Wu. Fortran D language specification. Technical Report

CRPC-TR90079, Center for Research on Parallel Computation, Rice University, De-

cember 1990.

H. M. Gerndt. Automatic paraIlelization for distributed memory multiprocessing sys-

tems. Report ACPC/TR 90-1, Austrian Center for Parallel Computation, 1990.

P. Hatcher, A. Lapadula, R. Jones, M. Quinn, and J. Anderson. A production quality

C* compiler for hyl)ercube machines. In 3rd A CM S]GPLAN Symposium on Principles

and Practice of Parallel Programming, pages 73-82, April i991.

P. Havlak and K. Kennedy. An implementation of interprocedural bounded regular

section analysis. IEEE Transactions on Parallel and Distributed Systems, 2(3):350-360,

July 1991.

26

[20] S. lliranandani, J. Saltz, P. Mehrotra, and I!. Berryman. Performanceof hashedcache

data migration schemeson multicomp,ters. Journal of Parallel and Distributed Com-

puting, 12:415-422, August 1991.

[21] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Compiler support for

machine-independent parallel programming in Fortran D. In J. Saltz and P. Mehrotra,

editors, Lan.quages, Compilers and Run-Time Environments for Distributed Memory

Machines, pages 139-176. Elsevier Science Publishers B.V., 1992.

[22] K. Kennedy, K.S. McKinley, and C.-W. Tseng. Interactive parallel programming using

the Parascope editor. IEEE Transactions on Parallel and Distributed Systems, 2(3):329-

341, July 1991.

[23] C. Koelbel, P. Mehrotra, and J. Van Rosendale. Supporting shared data structures on

distributed memory architectures. In 2nd A CM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, pages 177-186. ACM, March 1990.

[24] Max Lemke and Daniel Quinlan. P++, a C++ virtual shared grids based programming

environment for architecture-independent development of structured grid applications.

Technical Report 61 I, GMD, February 1992.

[25] J. Li and M. Chen. Generating explicit communication from shared-memory program

references. In Proceedings Supcrcomputing _90, November 1990.

[26] J. Li and M. Chen. Index domain alignment: Minimizing cost of cross-references between

distributed arrays. In Proceedings of the 3rd Symposium on the Frontiers of Massively

Parallel Computation, October 1990.

[27] J. Li and M. Chen. Automating the coordination of interprocessor communication. In

Programming Languages and Compilers for Parallel Computing, Cambridge Mass, 1991.

MIT Press.

[28] J. W. Liu. Computational models and task scheduling for parallel sparse Cholesky

factorization. Parallel Computing, 3:327--3,12, 1986.

[29] Guy Lonsdale and Anton Schuller. Parallel and vector aspects of a multigrid Navier-

Stokes solver. Technical Report 550, GMD, June 1991.

[30] L. C. Lu and M.C. Chen. Parallelizing loops with indirect array references or point-

ers. In Proceedings of the Fourth Workshop on Languages and Compilers for Parallel

Computing, Santa Clara, CA, August 1991.

27

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[4o]

[41]

D. J. Mavriplis. Three dimensional multigrid for the Euler equations. AIAA paper

91-1549CP, pages 824-831, June 1991.

R. Mirchandaney, J. H. Saltz, R. M. Smith, D. M. Nicoi, and Kay Crowley. Principles of

runtime support for parallel processors. In Proceedings of the 1988 ACM International

Conference on Supercomputing, pages 140-152, July 1988.

A. Pothen, H. D. Simon, and K. P. Liou. Partitioning sparse matrices with eigenvectors

of graphs. SIAM J. Mat. Anal. Appl., 11:430-452, 1990.

Anne Rogers and Keshav Pingali. Process decomposition through locality of reference.

In Proceedings of the SIGPLAN '89 Conference on Programming Language Design and

implementation, pages 69-80. ACM Press, .J,ne 1989.

M. Rosing, R.W. Schnabel, and R.P. Weaver. Expressing complex parallel algorithms

in Dino. In Proceedings of the 4th Conference on Hypercubes, Concurrent Computers

and Applications, pages 553-560, 1989.

J. Saltz, H. Berryman, and J. Wu. Multiprocessors and run-time compilation. Concur-

rency: Practice and Experience, 3(6):573-592, 1991.

3. Saltz, K. Crowley, R. Mirchandaney, and Harry Berryman. Run-time scheduling and

execution of loops on message passing machines. Journal of Parallel and Distributed

Computing, 8:303--312, 1990.

J. Saltz, R. Das, R. Ponnusamy, D. Mavriplis, H Berryman, and J. Wu. Parti procedures

for realistic loops. In Proct:edings of the 6th Distributed Memory Computing Conference,

Portland, Oregon, April-May 1991.

H. Simon. Partitioui,g of unstructured mesh problems for parallel processing. In Pro-

ceedings of the Conference on Parallel Me:thods on Large Scale Structural Analysis and

Physics Applications. Pergamon Press, 1991.

Ping-Sheng Tseng. A Parallelizing Compiler For Distributed Memory Parallel Comput-

ers. PhD thesis, Carnegie Mellon University, May 1989. Also available as Technical

Report CMU-CS-89-148.

Veer N. Vatsa, Mark D. Sanetrik, and Edward B. Parlette. Development of a flexible and

efficient multigrid based muitiblock flow solver. Submitted to the 31st AIAA Aerospace

Sciences Meeting, January 1993.

28

[42] V. Venkatakrishnan, H. D. Simon, and T..1. Barth. A MIMD implementation of a
parallel Euler solver for unstructured grids, submitted to Journal of Supercomputing.

Report RNR-91-024,NAS SystemsDivision, NASA AmesResearchCenter,Sept 1991.

[43] R. Williams. Performanceof dynamic load balancingalgorithms for unstructured mesh
calculations. Concurrency, Practice and Ezperience, 3(5):457-482, February 1991.

[44] R. D. Williams and R. Glowinski. Distributed irregular finite elements. Technical Report

C3P 715, Caltech Concurrent Computation Program, February 1989.

r • 1 •[45] H. Ztma, It. Ba.st, and M. Gerndt. Sup_,rb: A tool for semi-automatic MIMD/SIMD

parallelization. Paralh'l Computing, 6:1 18, 1988.

29

.... Form Approved

REPORT DOCUMENTATION PAGE - oNe o oTo -o,ea

Public reporting burden for this col_ectio_ of information i; estlmated ,o ,,er,ge ,! h o..ut. _ _..=_,, includlngthetl_ for r_l_in._l_ru_lon,_arc_?gex_L_ _ d?_._$ogrc, kes,.

.... " --;-*'='='- "h- "_-'a n=ed ahd ¢omntetinn ana reviewing tn@ (Olte_.T.iglrt g! ilqlt.wwlotlv.. =.lr=N _V..TI¢.I=b /_lUl. V U.! W_U=m ==t.I,mLC V" ='7 VL._I aaq_'_.L vl u.!
gainer rag _n_ ,;,_,.._=,,.,._. ,_ _,_, . ?.._Z_._^.. _^. o_,_._ n_ th s burden to W_h n_tOn Headqu_rte_ Services DirectOrate tot Information Operations and Reports, 1215 Jefferson
CO L_ OR OT inTofms_lOR, ll3£1uczlllg _ucl_j_¢,_-f_ ,re ,_u_ _ . • --=- - _ , .

Day s H ghway. Suite _ 204, Arlington. VA 22202-4302, and to the Off=ce of ManageMent M_d Budget, P_oerwork ReductiOn Project (0704-0 t88), Washington, IX 2050].

_. AGENCY USE ONLY (Leave _ank) 2. REPORT DATE 3• REPORT TYPE AND DATES COVERED

June 1992 ,.COntract°r,_ Report
4,. TITLE AND SUII'TITLE

PARTI PRXMZTIVES FOR UNSTRUCTURED AND BI_3K STRUCTURED

PROBLEMS

,i i

6. AUTHOR(S)

Alan Sussman, 3oel Saltz, RaJa Das, S. Oupta,

Dlmltr_ Mavrlplis, Ravl Ponntmamy, Kay Crowley

7. PERFORMING ORGANIZATIO_I" NAME(S) AND ADDRESS(ES)

Institute for Computer Appllcatlons in Science

and Engineering
Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23665-5225

!9. SPONSORING/MONITORING AGENCY NAME(S)AND AODRESS('ES)

HaClonal Aeronautics and Space Admlnlstration

5. FUNDING NUMBERS

C NAS1-18605

W_ 505-90-52-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Interl_ Report

No. 22

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

NASA CR-189662

Langley Research Center

Hampton, VA 23665-5225

it. SUPPLEMENTARYNOTES
Langley Technical Monitor:

Final Report

ICASE InterimReport

No. 22

l_tchael F. Card Symposium on High Performance

Computing for Flight Vehicles,

Dec. 7-9, 1992

12a. DISTRIBUTION/AVAILABILITYSTATEMENT

Unclassified - Unl_ited

Subject Category 61, 59

12b. DISTRIBUTION CODE

13. ABSTRACT(Maximum200words)

This paper describes a set of pr_mlt_ves (PARTI) developed to efficiently execute

unstructured and block structured proble ms on distributed memory parllelmachlnes.

We present experimental data from a 3-D Unstructured Euler solver run on the Intel

Touchstone Delta to demonstrate the usefulness of our methods.

14. SUBJECT TERMS

PARTI, tools, block structured, unstructured, sparse,

adaptlve, computatlonal fluld dynamics "

17.'- SECURITY CLASSIFICATION 18. s'EcuRITY CLASSIFICATION

OF REPORT -- OF-THIS-PAGE

Unclas_f_ed Unclassified

NSN 7540-01-280-5500

19. SECURITY CLASSIFICAI:ION
OF ABSTRACT

15. NUMBER OF PAGES

33
16. PRICE CODE

A03

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev 2-89)
Prefer=bed by ANSI Std Z3g-18

298-t02

